Potential of Fecal Sludge Briquette as Biofuel: A Review

Authors

  • Siti Nurul Khotimah Universitas Lampung

DOI:

https://doi.org/10.47355/jaset.v5i1.75

Keywords:

fecal sludge briquette, biofuel, renewable energy

Abstract

Fecal sludge from fecal wastewater treatment may create problem to environment and human health as Its high production number and its hazardous content.  The high volume of fecal sludge production not only reflects the scale of sanitation needs but also signifies a substantial opportunity for renewable energy generation by transforming the fecal sludge to briquettes. This article is a critical review to evaluate the potential of fecal sludge, especially about its characteristics as a raw material, the method to create the briquettes, the briquette composition and finally its performance regarding the fecal sludge composition. Interestingly, even though fecal sludge is hazardous as the high pathogen level such as bacteria, worm and its egg, they will die after drying and carbonizing process. Hence, it will be safe to utilize the fecal sludge briquettes for human need.  Comparing the calorific value of fecal sludge briquettes and coal (fossil fuel which has high energy value), the fecal sludge’s energy is about 3 times lower. This mean, if it is expected to achieve the fecal sludge briquettes’ calory equivalent to the coal, the number of fecal sludge briquettes should be multiplied 3 times.

References

Simiyu S., Chumo I., Mberu B. (2021). Fecal Sludge Management in Low Income Settlements: Case Study of Nakuru, Kenya. Frontier in Public Health. 11 October 2021. doi: 10.3389/fpubh.2021.750309.

Rao, Krishna C., Kvarnstrom, E., Di Mario, L., Drechsel, Pay. (2016). Business models for fecal sludge management. Colombo, Sri Lanka: International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE). 80p. (Resource Recovery and Reuse Series 06) doi: 10.5337/2016.213.

Singh S., Hariteja N., Renuka Prasad T., J., Janardhana Raju N., Ramakrishna Ch. (2020) Impact Assessment of Fecal Sludge on Groundwater and River Water Quality in Lucknow Environs, Uttar Pradesh, India. Groundwater for Sustainable Development Journal. 11(2020)100461. 2352-801X/©2020Published by Elsevier B.V.

Dantas M.S., Oliveira J.S., Pinto C.C., Oliviera S.C. (2020). Impact of fecal contamination on surface water quality in the São Francisco River hydrographic basin in Minas Gerais, Brazil. Journal of Water and Health. @IWA Publishing.

Odirile P.T., Obuseng V.C., Moshoeshoe M., Tshenyego L., Mbongwe B. (2024). Assessment of faecal sludge quality, heavy metal contamination, and ecological risk: implications for sustainable agriculture. Environmental Monitoring and Assessment. Springer. 196:1270. https://doi.org/10.1007/s10661-024-13385-5. l., “Long-term onsite monitoring of a sewage sludge drying pan finds methane emissions con

Bay M., Wang Z., Lloyd J., Seneviratne D., Flesch T., Yuan Z., Chen D. (2023). Long-term onsite monitoring of a sewage sludge drying pan finds methane emissions consistent with IPCC default emission factor. Water Research X. 100184.

Yajima A., and Koottatep Y. (2010). Assessment of E. coli and Salmonella spp. infection risks associated with different fecal sludge disposal practices in Thailand. Journal of Water and Health

Fuhrimann S., Winkler M.S., Kabatereine N.B., Tukahebwa E. M., Halage A. A., Rutebemberwa E., Medlicott K., Schindler C., Utzinger J., Cissé G. (2016). Risk of Intestinal Parasitic Infections in People with Different Exposures to Wastewater and Fecal Sludge in Kampala, Uganda: A Cross-Sectional Study. PLoS Negl Trop Dis 10(3): e0004469. doi:10.1371/journal.pntd.0004469.

Nganko J. M., Koffi E. P. M., Toure A. O., Gbaha P., Tiogue C. T., Ndiaye B., Ba K., Yao K.B. (2025). Comparative assessment of pollutant emissions between biofuel briquettes and charcoal: implications for domestic cooking fuel selection. Carbon Research. https://doi.org/10.1007/s44246-024-00177-2.

Karki B.K., Baniyac S., Khareld H.L., Angove M.J., Paudel S.R. (2024). Urban wastewater management in Nepal: generation, treatment, engineering and policy perspectives. H2 Open Journal Vol 7 No 2, 222 doi: 10.2166/h2oj.2024.105. IWA Publishing.

UN Environment Program. (November 19th, 2020). Improve human waste management in African countries for better health, environment and economy. https://www.unep.org/news-and-stories/press-release/improve-human-waste-management-african-countries-better-health. Accessed on 26th May, 2025

Eliyan C., McConville J. R., Zurbrügg C., Koottatep T., Sothea K., Vinnerås B. (2022). Generation and Management of Faecal Sludge Quantities and Potential for Resource Recovery in Phnom Penh, Cambodia. Frontier in Environmental Science. doi: https://doi.org/10.3389/fenvs.2022.869009.

Sagoe G., Danquah F. S., Amofa-Sarkodie E. S., Appiah-Effah E., Ekumah E., Mensah E. K., Karikari K. S. GIS-aided optimisation of faecal sludge management in developing countries: the case of the Greater Accra Metropolitan Area, Ghana. (2019). Heliyon by Elsevier. https://doi.org/10.1016/j.heliyon.2019.e02505.

Jakariya Md., Housna A., Islam Md. Ahsan N. G. U., Mahmud K., Modeling on environmental-economic effectiveness of Vacutug technology of fecal sludge management at Dhaka city in Bangladesh. Modeling Earth Systems and Environment.https://doi.org/10.1007/s40808-018-0418-0.

Suryawan I.W.K., Limb J.W., Ramadan B.S., Septiariva I.Y., Sarie N.K., Saria M.M., Zahra N.L., Qonita F.D., Sarwono A., (2022). Effect of sludge sewage quality on heating value: case study in Jakarta, Indonesia. Desalination and Water Treatment., 249 (2022) 183–190 doi: 10.5004/dwt.2022.28071

Mwamlima P., Mayo A.W., Gabrielsson S., Kimwaga S. (2023). Potential use of faecal sludge derived char briquettes as an alternative cooking energy source in Dar es Salaam, Tanzania “Nexus between Sanitation and Energy (SDG 6 & 7)”. Hygiene and Environmental Health Advances 7 (2023) 100068. https://doi.org/10.1016/j.heha.2023.100068.

Gold M., Ddiba D.I.W., Seck A., Sekigongo P., Diene A., Diaw S., Niang S., Niwagaba C., Strande L. (2017). Faecal sludge as a solid industrial fuel: a pilot-scale study. Journal of Water, Sanitation and Hygiene for Development. IWA Publishing.

Andriessen N., Ward B.J., Strande L. (2019). To char or not to char? Review of technologies to produce solid fuels for resource recovery from faecal sludge. Journal of Water, Sanitation and Hygiene for Development. IWA Publishing.

Wulandari S., Komala P. S., Raharjo, S. (2024). Characterization of Fecal Sludge Combined with Sawdust as Briquettes. Jurnal Presipitasi. Media Komunikasi dan Pengembangan Teknik Lingkungan. e-ISSN: 2550-0023. Vol 21, No 2, 2024, 324-338.

Sanka P.M., Germain O., Khalifa L, Komakech H., Magambo H. (2024). Production of low emission briquettes from carbonized faecal sludge as an alternative source of cooking energy. Energy, Sustainability and Society. https://doi.org/10.1186/s13705-024-00449-0.

Ward B. J., Yacob T. W., Montoya L. D. (2014). Evaluation of Solid Fuel Char Briquettes from Human Waste. Environmental Science & Technology. ACS Publication. dx.doi.org/10.1021/es500197h | Environ. Sci. Technol. 2014, 48, 9852−9858.

Sultana R., Hossain M. R., Saha A., Rafi F. R., Ahmed S., Ul-Zannat M. E. (2024). Transforming Fecal Sludge into an Affordable Biofuel Alternative: A Sustainable Solution for Developing Countries. Applied Environmental Biotechnology, 9(2):35-42. http://doi.org/10.26789/AEB.2024.02.005.

Sharma N., Gupta S., Vyas A. D. (2020). Estimation of fuel potential of faecal sludge in a water scarce city, a case study of Jaipur Urban, India. Water Practice & Technology. https://doi.org/10.2166/wpt.2020.037

Rowles L. S., Morgan V. L., Li Y., Zhang X., Watabe S., Stephen T.,

Lohman H. A. C. , DeSouza D., Hallowell J., Cusick R. D., and Guest J. S. (2022). Financial Viability and Environmental Sustainability of Fecal Sludge

Treatment with Pyrolysis Omni Processors. Environmental. ACS Publishing. https://doi.org/10.1021/acsenvironau.2c00022.

Nicholas H., Winrow E., Devine A., Robertson I., Mabbet I. (2025). Faecal sludge pyrolysis as a circular economic approach to waste management and nutrient recovery. Environ Dev Sustain 27, 5893–5924 (2025). https://doi.org/10.1007/s10668-023-04219-4

Gadaleta G., Todaro F., Giuliano A., De Gisi S., Notarnicola M. (2024). Co-Treatment of Food Waste and Municipal Sewage Sludge: Technical and Environmental Review of Biological and Thermal Technologies. Clean Technology. MDPI. https://doi.org/10.3390/cleantechnol6030044.

Stobernack N., Malek C. (2023). Hydrothermal carbonization combined with thermochemical treatment of sewage sludge: Effects of MgCl2 on the migration of phosphorus and heavy metal. Waste Manag. 2023 Jun 15; 165:150-158. doi: 10.1016/j.wasman.2023.04.010. Epub 2023 Apr 29. PMID: 37127003

Vogel C., Krüger O., Adam C. (2016). Thermochemical treatment of sewage sludge ash with sodium additives under reducing conditions analyzed by thermogravimetry. J Therm Anal Calorim 123, 1045–1051 (2016). https://doi.org/10.1007/s10973-015-5016-z

Kabango K., Thulu F.G.D., Mlowa T., Chisembe C., Kaonga C.C. (2023). Effect of carbonisation on combustion characteristics of faecal sludge and sawdust blended briquettes. Environmental Sustainability 6, 331–339 (2023). https://doi.org/10.1007/s42398-023-00269-6

Ariani I. K., Anifah E. M., Ma'arij M. Harfadli, Sholikah U., Hawani I. N. (2023). Valorization of durian peel waste and sewage sludge as bio-briquette. OP Conf. Series: Earth and Environmental Science. 1239 (2023) 012018 IOP Publishing. doi:10.1088/1755-1315/1239/1/012018.

Kiwana D. and Naluwagga A. (2016). SEEK: Fuel performance of faecal sludge briquettes in Kampala, Uganda. CREEC Regional Testing and Knowledge Centre

Food and Agriculture Organization of United Nations. (1990). Energy conservation in the mechanical forest industries. https://www.fao.org/4/t0269e/t0269e0c.htm#TopOfPage

Published

2025-06-28

Issue

Section

Articles